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GLOSSARY OF NOTATION

reference configuration
vectors in R based at X €38

deformation

infinitesimal deformation
strain

all deformations &
deformation gradient

transpose of F

Cauchy Green tensor

Stored energy function

first Piola-Kirchhoff stress
second Picla-Kirchhoff stress
elasticity tensor

(second) elasticity tensor
classical elasticity tensor
identity map on ‘Rs or B

a (dead) 1load

all loads with total force zero
all linear maps of TXB to RS
symmetric linear maps of TXB to TXS .

Qel® R QQ=1, det q = 1)

E
1

353
L®R",R™)
symmetric elements of M3

skew symmetric elements of M3

infinitesimal rotation about the axis v

equilibrated loads




k: L~ MS astatic load map
A= k(W) astatic load for a load 1
j o= (k| (ker 057! non singular part of k
Skew = j(skew) skew viewed in load space
Sym = j(sym) sym viewed in load space
d: ¢~ 1L $(¢p) = (-DIV P, PeN)
{u: B +R°|u(0) = 0, 7u(0) € sym}
sym
N image of Csym near Ig under
F: L ~ Skew N is the graph of F
FrRx L~ Skew E(AL2) = FOR)/A”
SA Q's in SO(3) that equilibrate A,

Editorial Note: To avoid confusion of notation, vectors and tensors

are boldface; vectors and 2-tensors are boldface italic and 4-tensors
are in boldface block letters. All other mathematical svmbols will

be light-face italic.




§1. “\lntroduction

The purpose of this paper is to study the traction problem in
three dimensional nonlinear elasticity using geometric techniques and
singularity theory. The first two wapers in the series deal with dead
loads and configurations that are nearly stress free. As was shown by
Signorini [1930] and Stoppelli [1958], this problem has nontrivial
solutions. However, their analysis is incomplete for three reasons.
First, their load was varied only by a scalar factor; in a full
neighborhood in load space of a load which has an axis of equilibrium
there are additional solutions missed by their analysis. Second,
their analysis is only local in the rotation group, so additional
nearly stress free solutions are missed by restricting to rotations
near the identity. Third, some classes of loads with a degenerate axis
of equilibrium were not considered. This paper completes their analysis
by treating these questions as well as stability. The complexity of
the answer is indicated by the fact that near certain types of loads,
we find up to 40 distinct solutions that are nearlyv stress free. Our
constitutive hypotheses on the stress tensor are 'generic'; for a
degenerate stress tensor there can be even more solutions.

The literature on this problem is very extensive, goi%g back
to Signorini in the 1930's. Our primary sources have been Stoppelli
"1958', Grioli [1962], Truesdell and Noll {[1965], Van Buren '1968],
Wang and Truesdell [1973], and Capriz and Podio Guidugli f19747.
However, none of the references beyond Stoppelli [1958] proves any
of the theorems dealing with nontrivial cases; i.e. loads with axes
of equilibrium. However, Grioli 19621 is a convenient reference

for the statements.




The outline of this first part of the paper is as follows. Our
notation for nonlinear elasticity and the problem near a natural state
is formulated in Section 2. In Section 3 the basic properties of the
astatic load are reviewed and developed. The problem is reformulated
with special reference to the global aspects of the rotation group in
Section 4 and introduces the bifurcation equation which plays a crucial
role throughout the paper. Section 5 treats loads with no axis of
equilibrium; there are three new features in this section. First the
proof of Stoppelli's results is considerably simplified. Second, the
results are global relative to the rotation group. Finally, the stabi-
lity of the solutions is determined. The number of solutions will be

classified by load types; this classification scheme is explained in

Section 6. (Some work related to the ''type classification’ was given by

-

Ogden [1977]). 1In Section 7 a second order bifurcation equation is shown

to be a gradient. This consequence of Betti reciprocity is basic to our

analysis. Section 8 gives a complete bifurcation analysis of type 1

loads (the case considered by Stoppelli), including a stability analysis.

New local and global solutions are found. The final section makes
explicit the comparison with Stoppelli's theorem.

The second paper of this series will analyze the remaining tvpes
2, 3 and 4, using a reformulation of our gradient results, discuss

linearization stability, narallel loads and will give additional

connections with the literature.
Acknowledgments

The Signorini-Stoppelli problem was first introduced to us by
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Statement of the Problem

let BC R> be an open bounded set with smooth boundary* and
assume for convenience that 0 &€ B. Let 1 <p <=, s> (3/p)+1
and let C be the space of maps ¢: B ~ RS that are of class w°'P
(so they are Clj such that #(0) =0, » 1is a Ws’p-diffeomorf‘ m
onto its image, and J(g) > 0, where J(3) 1is the Jacobian of .

For example, if y: B - R>  is w>'P.close to the identity and
w({0) = 0, theny&C . If Q is a linear isomorphism of RS to
RS with det Q > 0, then Qow € C as well.

Let points in B3 be denoted X &€ B and points in R> be
denoted x. Sometimes we write x = 2(X). Let TXB be the tangent
space to B at X, regarded as vectors in R3 based at X. We do
not identify TXB and RS for conceptual clarity. For ¢ € C , let
F(X) € L(TXB, RS) be the derivative of + at X; by standard abuse
of notation we write F(X) = Dp(X) or 74(X) interchangeably and
L(TXB, m?) denotes the set of all linear maps of TXS to RS.

We let F(X)T € LGRS, TXB) denote the adjoint of F(X} relative to
the Euclidean inner product. Observe that F(X) € L+(TXB, RS), the
linear transformations with positive determinant, since

det F(X) = J(3)(X) > 0. We let C = FIF (that is.

C(x) = F(X)TF(X) € L(T(B, T‘B)) denote the Cauchy-Green tensor.

*
We believe that our results also hold when B thas piecewise smooth

boundary. This program depends on elliptic regularity for such regions.

Except in special cases, this theory is non-existent and seems to
depend on a modification of the usual Sobolev spaces near corners.
However, for simple shapes like cubes, the necessary regularity can
be checked by hand in situations where the linearized elastostatic
equations can be solved explicitly.

. © e me -

-t L



Observe that C(X) € Sympos(TXB’ T‘B), the positive definite
symmetric linear transformations on TKB .

Assume we are given a smooth stored energy function W defined on

pairs (X,C) where C € sympos(T(B.'FXB). For » € C . the stored erergy

;-

of 5 is j.W(X,C(X))dV(X); where C 1is the Cauchv-Green tensor of
and dV is the volume element in B . The fact that ' depends on >
only through.the voint values of C 1is usually called rmaterial frame
indifference. (See Truesdell and Noll {19657 and Marsden and Hughes
1 1978] for discussions.) Since C 1is a function of F, we shall,
by abuse of notation also write W(X,F) for W(X,FTF).

The first Piola-Kirchhoff stress tensor P(X,F) 1is defined

by P(X,F) = gﬁ-W(X,F), the partial derivative of W with respect

T %
to FE. Thus, P(X,F) € L(T\(B,]R") . The second Piola-Kirchhoff stress

tensor S(X,C) 1is defined by S(X,C) = 2§EW(X,C), so

*
S(X,C) € sym(T(B, TKB) . From the chain rule, one has the relationship
P(X,F)*G = 25(X,C)+ F'G + G'F

for all G € L(TBR)."

For finite dimensional vector spaces V,W, the bilinear map
L(W,V) x L{V,W) > R; (A,B) » %{race(A B) defines an isomorphism
L(V,W)* = L(W,v). If V =W 1is an inner product space, this
jsomorphism identifies sym(V,V)* with sym(V,\). Usine this identifi-

cation, we get P(X,F) € LGRD, TXB)’ 5(x,C) € Sym(TXB,T¥B1 and

PIXLF) = S(X.C)OFT, or P = SFT for short,

“The mass density does not appear in our formulas as we are huilding
it into the definitions and work, for example, with hody force
per unit volume rather than per unit mass.

A2
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) 3P . - .
Let A(X,F) = gftx,F) denote the elasticity tensor. Identifyving

L(L(TXSJRJ), L(T‘B, RJ)*) in the usual way for second derivatives

with B(L(T(B, R’)), the space of bilinear maps of
L(T‘B, R’) x L(T‘B, RJ) to R, A(X,F) determines a svmmetric
bilinear map on L(T(B, RJ).

The second elasticity tensor C{X,C) 1is similarly defined to
b

35 "W

—_ Y e < P

3 2 =T evaluated at (X,C), so may be regarded as a

symmetric bilinear map on sym(T(B, T(B)' The chain rule gives

be

2ACX,F) +(G,H) = C(X,C)-(F'H + H'F, FIG + G'F) + S(X,C)*(HG + G'H)

The following two assumptions will be made in the first two
papers of this series.

(H1) The undeformed state is stress free; i.e. P(X,I1) = 0,

or equivalently, S(X,I) = 0, where I is the identity.

(H2) Strong ellipticity holds: there is an € >0 such that

ACLD o (v®Z, vB2) = clti

. R’) is defined hv
TS v @ ) (V)mveE (V.
The classical elasticity tensor is defined by ¢(X) = 2C(X, 1),

N -
for all ¢ € T(B and Vv EIRD, where v 8 £ € L(T

so ¢(X) 1is a symmetric bilinear mapping on sym(TYB,TYB) to R; at

b =1, we identify TXB and R’ since x and X coincide. By

(H1),

A(X, 1)« (G,H) = %Q(X)'(G + GT, H + HT1




Regarding A(X, 1) L(L(TXB,TXB), L(TXB, TXB)) and

c(X) € L(sym(TxB, TXB), sym(TxB, TXB)) . this reads
PACGLD G = (06 + 6,

or, if G 1is symmetric,
A(X,1)+G = ¢(X)(Q)

By (H2), solvability of the linearized equations of elastostatics can
be determined by the Fredholm alternative (see, e.g., Marsden and
Hughes [1978]).

We shall let B: B -~ RS denote a given body force (per unit
volume) and 7T: 3B = RS a given surface traction (per unit area).

These are dead loads; in other words, the equilibrium equations

for ¢ that we are studying are:

DIV P(X, F(X)) + B(X) = 0 for XE B
(E)

PX,F(X))=N(X) = T(X) for X € 3B

where N(X) 1is the outward unit normal to 38 at X€ 36 and DIV P
is the divergence™ of P{X,F(X)) with respect to X.

Let L denote the space of all pairs (B,T) = ¢ of loads (of

--, S - -
class W 'P on B and ¥ L-1/p,p

on 3B ) such that

[ B(X)dV(X) + { T(X)dA(X) = 0
B 3B

*Recall from above that P(X,F(X)) € L(IR‘.’, T‘(B) For any v ER3

’

then P(X,F(X))v defines a vector field on B : its divergence

defines the vector field DIV P hy  (DIV PYev = DIV (Pv)




i.e. the total force on B vanishes, where dV and dA are the
respective volume and area elements on B and 3B. Using the
divergence theorem, obhservethat if the pair (B,t} 1is such that (E}
holds for some » € C, then (B,T) €L . 1
Throughout the paper, the group S0(3) = {Q € LGRSJRS)[ QTQ =1
and det Q = +1} of proper orthogonal transformations will play a
key role.
By (H1), ¢ = IB {the identity map on B) solves (E) with
B =1 = 0. By material frame indifference, ¢ = QiB is also a
solution for any Q € SO(3). The map Q#~ Q|B embeds SO(3) into
C and we shall identify its image with SO(3). Thus, the '"trivial”
solutions of (E) are elements of SO(3).

Our basic problem is as follows:

(P1) Describe the set of all solutions of (E) near the trivial

solutions SO(3) for various loads £ € [ near :cero.

Here ''describe" includes the following objectives:
(a) counting the solutions
(b) determining the stability of the solutions
(¢) showing that the results are insensitive to small

perturbations of the stored energy function and the load.
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The Astatic Load and Axes of Equilibrium

This section is devoted to the geometry of the load space L.
Many of the results of this section are available in the literature,
but we gather them here for convenience.

Before beginning, we shall recail a few notations and facts

about the rotation group SO({3). Let

linear transformations of R to R
T

M = LR, R

1]
"

sym = {A EMS'A A}

skew -A}

#

{A EM..]AT
ol

We identify skew with so(3), the Lie algebra of S0(3); skew and

R are isomorphic by the mapping v ER’ » v € skew , where

Q(w) =wxv., If v=(p,q,r) relative to the standard basis, then

U r -q
v=|-r 0 P
Q -p 0

The Lie bracket is [Q,G] = vRW-wXVv=-(vxw where

vRwe€E M3 is given by (v ®w){u) = Ww,u) . The inner product
is {(v,w) = ;trace (GT w), the Killing form on so(3). Finally,
exp(@) is the rotation about the vector v in the positive sense,
through the angle fvi.

Now we turn to a study of L. For » €C and 2€ L, we sav

that 1 is equilibrated relative to » 1f the total torque in the

configuration ¢ vanishes:




(
J $(X) x B{X)dV(X) + f d(X) x T(X)dA{X) = 0
B

3B
where 2 = (B,7). From symmetry of the stress one sees that if
2 = (B,t) € L satisfies (E) for some $ &€ C, then 2 1is equilibrated
relative to &. (An easy proof uses the Piola transform; cf. Marsden
and Hughes [1978}).
Let Le denote the loads that are equilibrated relative to the
identity configuration IB .

Define the astatic load map k: [ < C =M, by

K(2,0) = j BX) ® 6 (X)dV(X) + Jf 200 R 5(X)dAC0
B8 38
and write k(%) = k(&, IB)'

We have actions of SO(3) on [ and (C given by:

Action of SO0(3) on L: QL(X) = {QB(X), Qr(\))

Action of SO(3) on C: Qb = Qoo

Note that Q¢ means '"the load arrows are rotated, keeping

the body fixed.' We shall write O2 and O¢1 for the SO0(3) orbits

of L and ¢. Thus, OI denotes the trivial solutions corresponding
B
to 2 = 0.
The following is a list of basic observations about the astatic

load, each of which is readily verified:
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(Al) 1 1is equilibrated relative to o 1if and only if

k(%,6) € sym. In particular, 1 € Le if and only if
k(2) € sym.
(A2) (equivariance). For 2 € [, = € C,and Ql,Qq £ 50(3)
. -1
k(Q,2,Q,9) = Qpk(2,2)Q,
In particular, k(QR) = Qk(&)
(A3) (infinitesimal equivariance). For L€, 8 € C , and
Wl, w2 € skew,
k(WISL)@) = wlk(zsm)r }\(Q”W’$¢) = “kti'rp) W,

In particular, k(W2) = Wk(2).

Later on, we shall be concerned with how the orbit of . & [
meets Le' The most basic result in this direction is the following.
3.1. DaSilva's Theorem. Let 2 &€ L. Then 02 a Le £ P

Proof. Byv the polar decomposition, we can write k(i) = QTA
for some Q€ SO(3) and A€ svm. By (A2), k(Q) = Qk({Y = A € svm,

so by (Al), Q1 € Le' .

Similarly, any load can be equilibrated relative to anv chosen
configuration by a suitable rotation.
The concept of an axis of equilibrium deals with the case in

which (. meets [ in a degenerate wayv.
. e g

4—-—————-————_-“

]




5.2. Definition. Let ¢ &L,  and v €R’, Ivl = 1. We say that

v is an axis of equilibrium for ¢ when exp(@@)& S Le for all

real 8, i.e. when rotations of 1 about the axis v do not

destroy equilibration relative to the identity.

A number of useful ways of reformulating the condition that v

be an axis of equilibrium are as follows.

3.3. Proposition. EEF v e Le and A = k(1) € sym. The following

conditions are equivalent:

1. 2 has an axis of equilibrium v

2. there isa vER’, vl = 1 such that V¢ € Lo

w

We AW + WA fails to be an isomorphisi of skew to itself

4. trace A is an eigenvalue of A.

(§9)

Proof. 1 = 2. This follows by differentiating expi(3v): in

at 3 = 0. 2=1. By (Al),
k(exp(8¥)2) = "I + (8%) + = (3V) UKL

Since k(v?) = Gk(l) is svmmetric, this is svmmetric, term
by term.
2 =13, Since k(vi) = vA 1s symmetric, VA * Ay = 0, so

Wk AW * WA is not an isomorphism.

3=2. There exists a v E€R’, vl = 1, such that vA + W o= 0,
so k(vi) = vA is symmetric.
3 €4, Pefine L <M, bhy L = itrace Aj1 - A, Then one has

Y

the relationship

11




(Lv)" = A¥ + %A

{(In fact, if [u,v,w] denotes the triple product, the relationship

(Bu,Bv,Bw] = det Blu,v,w] gives [Au,v,w] + {u,Av, w] + [u,v,Aw]
= (trace A) [u,v,w] . This yields (Lv)~ = A + ATG , which
gives the claimed results for symmetric A). Therefore,

A¥ + ¥A = 0 1if and only if Lv =0, i.e., v 1is an eigenvector

of A with eigenvalue trace A . B

3.4. Corollary. Let ¢ € Le and A = k(f) € sym. Let the eigen-

values of A be denoted a, b, c. Then 2 has no axis of equili-

brium if and only if (a + b)(a + c)(b + ¢) # 0.

Proof. This condition is equivalent to saying that trace A
is not an eigenvalue of A,
3.5. Definition. We shall say that 2 € Le is a type 0 load if 1
has no axis of equilibrium and if the eigenvalues of A = k()

are distinct.

The following shows how the orbits of type 0 loads meet Le

3.6. Proposition. Llet L € Le be a type 0 load. Then 02 Q‘Le

consists of four type 0 loads.

Proof. We first prove that the SO(3)-orhit of A in .\1~> under

the action Q=QA nmeets sym in four noints. Relative to its hasis

of eigenvectors, we can write A = diag{a,b,c). Then O\

CoRym

contains the four points

e~




diagf{a,b,c) Q

19

diag(-a,-b,c) (Q = diag(-1,-1,1))
dizg(-a,b,-¢) (Q = diag(-1,1-1))
diag(a)~b)'c) (Q = dia‘g(la'lr'l))

These are distinct points since (a + b){a + ¢)(b + ¢) # 0. Now

suppose a, b and c¢ are distinct. Suppose QA = S &€ sym. Then

i i
S™ = AT, Let My be an eigenvalue of S with eigenvector u; .
2 2 2 2. . 2
Then S u; = uiui = A ui, o) Ui is an eigenvalue of A~. Thus,

5
as the eigenvectors of A~ with a given eigenvalue are unique,

Uy is an eigenvector of A and fui is the corresponding eigenvalue.
Since det Q = +1, det S = det A, so we must have one of the four

cases above.

By equivariance, k(OQ) N sym = Ok(z) N sym is a set consisting of
. P | - . .
four points. Now 02 "Le = k (Ok(l) M sym), so it suffices to
show that k 1is one-to-one on 02. This is a consequence of the
following and (A2).

v -

3.7. Lemma. Suppose A € sym and dim ker A < 1. Then A has no

isotropv; i.e. QA = A implies Q = I.

Bzggﬁ. Every Q # I acts on R3 by rotation through an angle
4 about a unique axis, that is, about a line through the
origin in R5 . Now QA = A means that Q 1is the identity on the
range of A. Therefore if O # I and QA = A, the range of A

must be 0 or 1 dimensional, i.e. dim ker A 22, B

e~
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Finally in this section, we study the range and kernel of

k: L - M,
3

5.8. Proposition. 1. ker k consists of those loads in Le for

which every axis is an axis of equilibrium.

2. k: L~ MS is surjective.

Proof. 1. Llet 2 € ker k. For W& skew, k(WL) = Wk(2) = 0O
so WL & Le; by 3.3 every axis is an axis of equilibrium. Conversely,
if wWe &€ Le for all W & skew, then Kk(WL&) = Wk(2) is symmetric

for all W; i.e. k(2)W + Wk(l) = 0 for all W. From

(LV)A = AV + GA, where A = k(2), and L = (trace A}l - A, we
see that L = 0. This implies trace A = 0 and hence A = 0.

To prove 2 introduce the SO(3) invariant inner product on L:

(2,0 = I(B(X),ﬁ(.‘())d\/()() + (T(X),T(X)YdALX) .
B 58

Relative to this and the inner product trace(ATB)/l on MS’ the

T
adjoint k : MS +{ of k 1is given by

KT (A) = (B,T) where B(X) = AX-G, 7(X) = AX-G.

and
{ " (
G = ?'AX dvix) + { AX dAIX)jff}dV + da |
g I g S 0B ‘58 4
If kT(A) = (0,0) then it is clear that A = 0. It ftollows that

k is surjective. W




3.9. Corollary. 1. ker k 1is the largest subspace of Le that is

S0(3) invariant,

2. k!(ker k)l . (ker k)'L -~ M3 is an isomorphism.
. 1,-1 .
Let j = (k|(ker k)7)™" and write
Skew = j (skew) Sym = j (sym)

These are linear subspaces of L of dimension 3 and 6 respectively.

Thus we have the decomposition:

s e

L = Skew ® Sym & ker k

e

corresponding to the decomposition M3 = skew % sym;

U= 2 - 0N v L+ uh).

Note: Skew and Le need not be orthogonal.
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34. Equivalent Reformulations of the Problem

Define &: C -~ L by d(2) = (-DIV P, PeN) i.e.

(9 (X) = (=DIV P(X,F(X)), P(X,F(X))+N(X))

so the equilibrium equations (E) become $(3) = L . From material
frame indifference we have equivariance of »; i.e. 2(Qo) = Qd(3).

Standard Sobolev estimates show that ¢ 1is a smooth mapping (see,

for example, Palais [1968]). The derivative of % 1is given by

DO(p)eu = (-DIV(A+Tu), (A+7u) *N)

and at ¢ = IB this becomes

Db(Ig)eu = (-DIV(cre),(Cre)-N)

where e = ={Vu + (Vu)T:.

19 =

If D¢(IB): TI C -~ L were an isomorphism we could solve
B
(o) =2 uniquely for % near IB and 7 small. The essence
. . . .<since ?LSO(S))=O,
is not an 1somorph15m,»ukornel DO(IB) contains

sk,

of our problem is that D@(IB)

. =r€ A, = c T)——_W
Define CSym ‘u TIBu u(0) 0 and Yu(0) € symp . From

(H2) and linear elasticity, we have:

. l . - -~ . c .. -
4.1. Lemma. D@(IB),CSYm. Lsym Le is an isomorphism.




The connection between the astatic loud map x: L = M. and 3
2

is seen from the following computation of k79,

4 2. Llemma. Let € C(C and let P be the first Piola-Kirchhoff

stress tensor of > . Then

k(de2)) = ' pdv

This follows by an application of Gauss' theorem to

’ ’
i

K(5(%)) = | (-DIV P) ® X dV(¥) + (PN} ® X dA(XT.
/3 )38

This should be compared with the astatic load relative to the

configuration % rather than IB; one gets )

k(9(9),2) = ; S dv

which is symmetric, while k(2(¢)) = k(?(2),I,) need nut bhe.
To study solutions of 2(¢) = 2 for ¢ near the trivial
solutions and 7 near a given load 20, it suffices to take

. € Le' This follows from Da Silva's theorem and equivariance of .

Let Csvm be regarded as an affine subspace of ( centered at
IB. Let 5 be the restriction of % to Cgvm. From the implicit

function theorem we get:




4.3, Lemma. There is a ball centered at I, in C‘\m whose image
V] —_ SVT —_—

N under 5 is a smooth submanifold of L tangent to L_ at 0
—_— e

(see Figure 1). The manifold N is the graph of a uniaue smooth

mappin

-

F: L -~ Skew
e

i
!
such that F(0) = 0 and DF(0) = 0.
i
g
Com i
3
]
I
B

ker k

Figure 1
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Later we shall show how to compute D'F(0) 1in terms of D¢(IB)-

and c.

Now we are ready to reformulate problem (P1).

(P2) For a given RO (S Le near zero, Study how 02 meets the graph

gﬁ F  for various 2 near 10.

Problems (P1) and (P2) are related as follows. let 9 solve (L)
with 2 € L and Q be such that & = Q¢ € Csym- Then 3(3) = Q2 ,
so the orbit of ¢ meets the graph of F at 8(3). Conversely, if
the orbit of 2 meets Nat $(¢) = QL , then ¢ = Q-IS solves (E).

We claim that near the trivial solutions, the numbers of solutions

to each problem also correspond. This follows from the next lemma.

4.4, Lemma. There is a neighborhood U of Ig in Csvm such that

o€U and Q¢ €U implies Q = Ig.

Proof. Note that C is transverse to (., at I and 1
_ sym Ig B B
has trivial isotropy. Thus, as SO0{3) 1is compact, OI is closed, so
B
there is a neighborhood of U, of 1 in € such that
0 B sym

QlB<U, implies Q = I. The same thing is true of orbits passing
through a small neighborhood of IB by openness of transversality and

compactness of SO(3).

If 0Q meets N in k points Q2 = p(éi), i=1,...,k then
3. are distinct as $ is 1-1 on a neighborhood of 1, in C_ .
i B svm

If this neighborhood is also contained in U of 4.3, then the points




20

-1-
i %y

Q

= ¢i are also distinct by 4.4 Hence the problems (P1) and P}

are equivalent.

In connection with the action (Q,A) » QA of S0(3) on M we

shall require some more notation. Let
v 1 T - N
Skew(A) = F(A - A} € skew (3.2a)
and
1. T, = -
Sym(A) = (A + A") € sym (3.2b)

be the skew symmetric and symmetric parts of A, respectively.
We shall, by abuse of notation, suppress j and identify Svm
with sym and Skew with skew. Thus we will write a load 1 € L as
£ = {A,n) where A = k(R) € MS and n € ker k; hence 1 € Le precisely

when A € sym. The action of SO (3) on L 1is given by

Qe = (QA,Qn).

Using this notation we can reformulate problem (P2) as follows:

(P3) For a given 10 = (Ao,no) € Le near zero, and ¢ = (A,n)
near 10, find Q € SO(3} such that

Skew (QA F(Sym(QA},Qn) = 0.

Define the rescaled map F: R «x L, = Skew by

ekttt ime.., . ettt O
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Since F(0) = 0 and DF(0) = 0, F 1is smooth. Moreover, if

F(2) = %G(l) + éC(Z) + ... 1s the Taylor expansion of F about

—
1

\

zero, then F(1,1) = (R) + SC(Q) + L.

4

N

In problem (E) let us measure the size of ¢ by the parameter
A . Thus, replace $($) = ¢ for ¢ near zero by »(9) = i
for A near zero. This scaling enables us to conveniently distinguish
the size of ¢ from its 'orientation'. In the literature 2 has
always been fixed and A taken small. Here we allow < to vary as

well. Thus we arrive at the final formulation of the problem.

(P4) For a given 10 = (AO,nO) S Le’ for near QO and 1\ 'small,

find Q € SO(3) such that

Skew(QA) - MF (i, Symi{QA),Qn) = 0.

The left hand side of this equation will be denoted H(),A,n:Q)

or H(A,Q) if A, n are fixed.




5. Type O: No axis of equilibrium

We shall begin the analysis by giving an (almost trivial) proof

of one of the basic theorems of Stoppelli :1958}*

5.1. Theorem. Suppose 1 & Le has no axis of equilibrium. Then for

A sufficiently small, there is a unique o5 € C.yp and a unique Q

in a neighborhood of the identity in SO0(3) such that o = Q-IB solves

the traction problem

P(6) = AL .

Proof. Define H: R x SO(3) - Skew by

H(A,Q)

Skew(QA) - AF(X,Sym(QA), Qn))

[}

where £ = (A,n) € [ Sym b ker k 1is fixed. Note that

e
D,H(O,I)*W = Skew (WA) = %(WA + AW). By Proposition 3.3, this is
an isomorphism. Hence, by the implicit function theorem, H(1,Q) = O

can be uniquely solved for Q near I € SO(3) as a function of 7}
near 0E€R. W
The geometric reason ''why' this proof works and the clue to

treating other cases is the following.

*

The only other complete proof in English we know of is given in
Van Buren (1968, although sketches are available in Grioli 1963,
Truesdell and Noll 1965 and Wang and Truesdell 1973 . Our pronof
is rather different; the use of the map F avoids a series of
complicated estimates used by Stoppelli and Van Buren.




5.2 Lemma. A load 2 € Le has no axis of equilibrium precisely

when L = Le C) TlO, . In particular, if ¢ has no axis of equili-

brium, then Ol intersects Le transversely at 1

Proof. The tangent space to Oz at €L, s ngz = TWLIW € skew:

and the projection of this into the complement Skew to Le is
WL = L(WA + AW) where A = k(2) . The result then follows from

part 3 of 3.3. @

We have shown that there is only one solution to ®(p) = )1 near
the identity if i 1is small and ! has no axis of equilibrium. How
many solutions are there near the trivial solutions S0(3)? As we
shall see, this problem has a non-trivial answer which depends on the
type of %. We analy:e the simplest case here. Recall from
definition 3.5 that a load 2 €& Le is said to be of type 0 if 1 has
no axis of equilibrium and if A = k{(I) has distinct eigenvalues.

Loads with no axis of equilibrium occur amongst other types of
loads classified in the next section, and Stoppelli's theorem 5.1
applies to them. However, the global structure of the solutions
(""global" being relative to SO(3)) is Jifferent for the different tvpes.
For type 0O the situation is as follows.

5.3. Theorem. let 20 € Le be of type 0. Then for + sufficiently

small, #(3) = 2

9 has exactly four solutions cl,:ﬂ,:; and o in oa

neighborhood of the trivial solutions SO(3) € (¢ (see Figure ¢




Proof. By 3.6, O,\1 meets L in four points. By 5.1, in
-_— X

a neighborhood of 0 in L, 0,

,  meets V in exactly four points,
\LO
the images of 51, ., 53 and 34, say. Thus problem (P2) has four
solutions. By the equivalenceof (P1l) and (P2), so does (Pl). =

SO(3); the N
trivial solutions

Figure 2

e
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w

Let A = k(2,) and S, = {QlQA € sym}. From the proof of 3.6

we see that S, 1is a four element subgroup of SO0(3) isomorphic to

Z-® Z,. By our earlier discussions, the elements Di are obtained

from 51 by applying rotations close to elements of SA' In

particular, as 1 ~ 0, the solutions {pi} converge to the four

element set SA (regarded as a subset of ().

For L sufficiently close to the problem () = Al will

‘9
also have four solutions. Indeed by the openness of transversality,
Oll will also meet N in four points. In other words, the picture
for type 0 in Figure 1 is stable under small perturbations of ;O'
Next we study the stability of the four solutions found in

Theorem 5.3. This will be done under the hvpothesis that the classical

elasticity tensor in stable. We introduce the following condition:

(H3) Assume there is an n > 0 such that for all e & SymlT(B, TKB}'

cle) = %C(X)(e,e) = nlel=, 1.1 = pointwise norm

{e(e) 1s the stored energy function for lineari:ed elasticity).
Because of difficulties with potential wells and dynamical
stability in elasticity (see Knops and Wilkes “1972) and Ball, Knops

and Marsden [ 19787 ) we shall adopt the following ''energy criterion"

definition of stability.

5.4. Definition. A solution 9 of d(4) = i will be called stable

if 5 1is a local minimum in C of the potential function




<2
w
—
1]
=
€
e
(o9
-2
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where (2,0)= -r BUX)epiX)dV (X} + ; TIX) = 3 (X)dA(X) = trace k(2,:>
] B8 '

(9]

If o is not stable, its index 1is the dimension orf the largest
subspace of vectors u tangent to ( at » with the property
that ; decreases along some curve tangent to u. (Thus, index 0
corresponds to stability.)

5.5. Theorem. Assume (H1)-(H3) and let .

11 S 1 e 3 < - PN - IN ’
sufficiently small, amongst the four solutions Syrtaatgely  glven

by 5.3, exactly one is stable; the others have indices !, 2, asnd 3.

Suppose 5 1s a solution approaching Q€ Sk as & -~ 0, hen ¢

is stable if and only it QA - trace(NA)I € sym is nositive-definite.

In general, the index of % is the number of negative eigenvalues

of QA - trace (QA)I .

Proof. Let by < ¢ solve 3(2) = R Then 0 is a critical
point of V\ﬂ . Consider the orbit ( = JQﬁl‘Q T S0 ot o
“0 “0
Its tangent space decomposes T, O as rollows:
-")

T.C=T,0, #17T, 0.

0 MRS 0otn

First consider V. restricted to (T ¢ V. Its <econd leriative

1

at %y in the direction of = 7 O, pe Tt Tu, uodv e
! . ’ EATOR B




D= QIB , this becomes J c{X)e(e(X),e!X);jdV(X), where
B

1 T L . .
e = 5(7u + (7u) ). This is larger than a positive constant times the
o4 '
L™ norm of e, by (H3). However, since u 1is in (T,0~,
2 2 "
lel®, = (constant) llull

L= H
By continuity, we have

1 by Korn's inequality (see Fichera '1972)).

-

D7V, (5)%(uu) > Ik

A2 1
*0 H
if u 1is orthogonal to O3 at 3, and \ is small. This implies
0
that %0 is a minimum for V, in directions transverse to (_

0 )

(Actually one can see that . is a local minimum in the topology

0
| .
of C on (TD 0D }© by using Tromba's "1976  version of the Morse
. 0 70
lemma. )
Next, consider ‘J:“7 restricted to Cﬁ . By material frame
0 "0
indifference, W is constant on (', and so as 50 must be a
+
0
critical point for V}} restricted to O, , 1t is also a critical
0 i)
point for RZO = ]  restricted to OD (where 7(3) = (o001t
0N
suffices therefore to determine the index of 1'C, at o, The
*n

result is now a consequence of continuity and the limiting case

-~ 7 given in the following lemma about tvpe 0 loads.

5.6. Lemma. Let 2 bhe tvpe 0 and let A = k(). Then Sy

regarded as a subset of ( ecquals the set of critical points of

These 4 critical points are nondegenerate with indices

n, 1, 2 and 3; the index of § is the number of ncgative eijgenvalie:

Qi‘)\-trncofﬂA)I.




Proof. First note that L_ = (;Tlssou)f since D9(1g) nas
kernel TI“SO(S) = skew, has range Le and is self-adioint. Thus
A < Le i? and only if : 1 T TSOLS). It rfollows that Qf{ € Le ir
and only if QT is a critica? point of z‘OI . /Recall that
elements of SA = QS SP(3)iIQe € Le? are syimetric.)

T

0 compute the index of . 01 at Q€ § we compute the

‘A
B
second derivative

5

E—:aL(exp ftwiQ), -0 = TWTQ)
dt” =

Now
b D hl
UWTQ) = trace k(I,WN7Q) = trace[kf ,01k7]
A 2 .
= trace [AQ "W7] = trace [WQA]
. -1 - L e .
because Q © = Q . This auadratic form on shew is represented by the
element 0A - trace(NAIT of sym as 1s seen from VA + AV = Lv1 with
A replaced by 0\ and trace {vw) = 2vew . U'sino the renresentations

for 0\ given Proposition 3.6, namely

diagra,b,c), diagf-a,-b,o%, diagf(-a,b,-¢) and diagta,-h,-c)

one chechs that all four indices occur. W

Remark. This lemma 15 a =pecial case of the ceneral problem

to study the critical points ~% Tinedr Sunctionsls on orhits of g




representation or a Lie group. This situation will arise again in

our analysis of the other load types, c¥. Frankel [1965] auac

Ramanujam [19691].
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6. (lassirication or Jrbits in HB

The purpose of this section is to classify orbits in M. under
2
the action {Q,A) = QA of S0(3) on HS bv the way the orbits
meet sym. It is enough to consider orbits OA of elements or svm

by the polar decomposition. We begin by recalling a result already

proved.

6.1. Proposition (Type 0). Suppose A € sym has no axis of equilibrium

~

and has distinct eigenvalues. Then (¢, 7 sym consists of four points

A

at each of which the intersection is transversal.

This was Proposition 3.6. (Another proof of this is given below.)
We shall let the eigenvalues of A € sym be denoted a,b,c.

Using the terminology from 33, we say that A has no axis of equilibrium

when (a+b) (b+c)(a+c) # 0; i.e. a + b + c # a, b or ¢, and in this

case OA intersects sym transversely at A.

6.2. Definition. We shall say A 1is of tvpe 1 if A has no axis

of equilibrium and if exactly two of a,b.c are equal aprd non-zern

isav.a =b # ¢, a # 0).

b A -~ s -

6.3. Proposition. 1 A 1s type 1, then “y osym consists or

R . . .. . 1 .
two points (each with no axis of equilibrium) and an RP = gl feacn

point of which has one axis of equilibrium}.

Before proving this, we give a number of lemmas of general
= e . S 3
utility. [f i €RP™ 1is a line through the origin in R ., let 0

hbe the rotation through angle =~ abhout .. ;




|
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.4, Lemma. ¢ =

Proof. It is

into 3S0(3). Since

is an embedding of TP onto  S0(3) 7 osvmy

(¥
—

.

)
“

some axis <. If such Q also

independent real eigenvectors.

= Q is a one-to-one map of RP

o 1t maps 1nto

i

= Ql = Q,

«

(3)\I is a rotation through some angle < about

is symmetric then it has three

Hence = = 7 . B

6.5. Corollary. The orbit of the identity, ¢,, meets svm in

=

one point (I} and

6.6, Lemma. Let

Q €50(3)'T and QA € sym.

RP- = (S0(3)

o~

svmi\ L

A € sym with dim ker A ¢ 1 and suppose that

nder A, and in rarticular 0

Proof. We can suppose

unit vector X € R
Ay o T

QV = A, so QAQ
constunt ¢, Fach

complement of ¢

[,Ct S = ”\ I

M
<

Then 0 =0 for some line . invariant

= svm.

Q# I. There is a unique 'up to sien.

3

such that €x = x. Since 0N svm, we have
= A, Thus CAx = AX, s0 AX = cx  9or 3
of Q and \ leaves V = x7, the orthogonal

s . . . .
invariant, and V is not identically zZere on

this implies S'V = * A'V oivin

«{x' is the line throuvh x

AT . Since O'V is a rotation
a =1 or =10, where
: A

Then M= <vm g in jemma 6.1, B




[t follows that if dim ker Doomd
QA € svm, then QA = AQ, so as 4 1is both orthogonal and syvmmetric,

A and Q can be simultaneously diagonali:zed.

—1
rt,

Proof of o.l. " A has J..tinct eigenvalues, its eigenvectors
are unique, so ) 1s either <he identity or is a rotation by ~ about

one of the eigenvectors. W

Proof of ».3. Suppose O # a = h # ¢, and let w be an eigenvector

orresponding to the eigenvalue <. Let V be the plane orthogonal

3 0w $: . 1% the eigenspace with eigenvalue a. As Q, A can be
sinultaneonlss diagonalized and Q  is a rotation by T (excluding
= 1T 4w onaue wvither O0= Q‘(W) or Q = QL for 4 a line in V.
otne farmer case, Q;(W)A has eigenvalues (-a,-a,c) so has
inis of eunilibrium,  In the latter case, Q?A has eigenvalues

A.-1,-Ci, 3o w 1s an axis of equilibrium, (see 3.3). W

- - 1 . - . . .
5.7, Corollary., The RP in Proposition 6.3 is a right coset of
1

1 . . 1 -
the subgroup Sw of all rotations about w; 1in fact WP = 5 Q.

where 7 is any fixed line irn V, the nlane orthogonal to w.

1 . \ . Cae
Proof. WP = 1Q7|L€ V} and we have the easily verified

identity




)
il

where ¢ rakes an angle -~ with . n the nositive sense 10

2

0

These lemmas also enable us to handle the next tvpe.

6.3. Definition. We

shall say A is of twne 2 ir '\ hasg no

axis of equilibrium and all three of a,b,c are equal fand so0 # 0},

6.9. Proposition. If A is tvpe 2, then ., ~ sym consists of

one point (A) and an RP~.

Proof. This is immediate from 6.5. @&

Notice that each
of equilibria; namely

orthogcnal to 2. The

Tvpes 0,1, and 2

-
point of the RP~ has a whole circle of axes
Q.A has as axes of equilibria all vectors

2 q

eigenvalues of Q,A are a,-a,-a.
A

exhaust all symmetric matrices with no axis

of equilibrium, and it is easy to check from the above that any

svmmetric A with dim ker A 2 ] lies on the SO(53}-orbit of a

BN

type 0,1, or I matrix

any representatives of them, type 0,1, or .I.

From now on we shall call these orhits, or

-~

Finally we turn to the remaining A's with an axis of cauilibrium

that is not already on

6.10. Definition. We

an orbit of type 0,1, or C.

say A is type 3 1f dim ker A = 2 and

—h
say A is tvpe 4 if = 0.
6.11. Proposition. 1f A ig type 5, ghen Gy svm SonSists

two points, A_and -A.
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hl
Proof. S = QA € sym implies S~ = A and 30 again S = *3\,
as in 6.6 even though possibly A’V = 0 . In this case 0 could
be any rotation about 2(x).H

All the foregoing information can be summarized as follows:

6.12. Theorem. The SO(3) orbits in MS fall into five distinct

types according to the way in which thev meet svm (sec Table 1 below).

Furthermore, for A € svm, S, = ‘Q'QA = sym; consists of I {0,

for all ¢ 1invariant under A {and hence S\ < s5vm) except in the

cases (1) dim ker A = 2; then S\ also contains the rontations

through any angle about the eigen-axis of A\ corresponding to the

non-zero eigenvalue;

(2) A =0; then S, = S0(3) . See Table 2 below.

Remarks

I. Table I highlights the fact that having an axis of equilibrium

or not is not an invariant of the SO(3) action on L . This means
there are equilibrated loads having an axis of equilibrium, bnt
which when rotated globally by a certain amount <c another

equilibrated load no longer have one.

[ ]

Thus, bg,Theorem 5.1, we get existence of solutions to the traction
problem for all types of astatic loads except 3,1.*
3. The notion of tyvpe can be pulled back from Moo to L with a

little care, as we sce below.

*In particular the occurrence of 0 solutions hy Stoppelli in “vne i
is seen to bhe due to a neglect of the full rotation group tsee
Section 8). Our results are also consgistent with those of Ball
[1977].
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] ©6.15. Definition.

By analogy with our definition

M

| S, = {Q€s80(3) | M Esymb , A€M

which we applied when A 1Is of tyvpe ¢ , let us now write

[92]
u
.
o)
Mm
192}
@]
PannY
wi
2
m
—
in
—

From equivariance of Kk we clearly have:

6.14. Lemma. Sz = Sk(l}
Note that the map S, ~ Okf\ sym: 0O 3\ is an embedding ror

types 0,1,2 but not all types 3,4, because of the isotroboy.

Pulling back to L , we see that Qr- 07 is an embedding S, ~C, 7 L,

-

if k(1) 1is of type 0,1 or 2, so we can refer to ¢ as being of
tvpe 0,1, or 2 according as k() is. On the other hand, if k(2}
is of type 3 then

either (a) U? R Le = {2,-2}

or (b} C?‘W L two disjoint circles in <l,-i% + ker k

e

Finally, if k() 1is of tvpe 4 then ¢. T ker k < Le and any

SQt3) orhit C(, is allowable.
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Type of A : Description of S,
‘ :

=

four points

)
1 two points and mn>1 = 37

A
one point and RIP™

two disjoint circles

1 ! SO(3)

TABLE 2

Figure 3 illustrates some simple examples of loads of different

types. These loads are all pure traction, with B = 0.




axis of equilibrium

!

|
|
t
|
!
v
{
|
’
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[ a
Type 1. RoEation ay'180 .
about one of the horizontal
aXes produces an equili--
rated load with no axis of

equilibrium.

Tvpe 2. Any horizontal axis
is an axis of equilibrium;

vertical axis is not an axis
of equilibrium. Rotation by
180° about the vertical axis
gives an equilibrated locad

with no axis of equilibrium.

Tvpe 3 (a). The load

group of summetries
about the axis «--
which is thus an axis
of equilibrium.

itself admits a circle

»
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Sy Tvoe 2 ( 0), The load is
not svmmetric, but the
astatic load remains
constant under rotation

. / about the axis :--which
is thus an axis of
equilibrium.

Tvype 4 ., The astatic
= load is zero: all axes
are axes of equilibrium.

T
I

[

gure : . .oad tvpes




37. The Bifurcation Equation and its Jradient Character

According to the formulation (P!} of our problem, we wish to

solve the equation H(3,A,n;Q) = 0 for &, where

Hiy,A,n;Q) = SkewtQA) - “F(\,Svm{QA),dn),

{A,n) is near ‘Aq’no) =L, and + is small. Define the right-invariant

vector rield X\ on SO(3) by

Xy Q) = Skew(QA,)+Q;

i.e. right translation of Skew(QAO) & so(3) = TISO(S) to TQSO(S).
Likewise, we shall regard H as a right-invariant vector field o

SO(3) depending on the parameters ),A,n by setting

X(4,A,n:Q) = H(,A,n:Q)+q

Thus,
; N M
Y(O,A”,n”,\) \\ (
0
Finally, note that 3 s the zero set of \\ N T
0 )
S = 02 S0 Shewod o=
0
What < s for varions tvpes wias tpoen Lo, !

\()




U

of any tvne. Then for 0O =

M
. A
3
-
S

T.1. Lemma. Suppose A

= 4 e sk . 4 + A S T X ’
TQSAn tWQIW skew and lQAo QAOW U;= Ker DX\n{Q).

Proof. The second equality is clear for any AO’ because DX, (Q):
WO~ shew (WQAO)-Q . For the first one, the inclusion C immediately

follows by differentiation of X\ {(Q) = 0 in Q. Equality then
0 .
tollows by a dimension count; recall from 3.3 that v e~ v gives

an isomorphism from the space of axes of equilibrium for A (not
necessarily of unit length) to the W € skew such that WA + Av = 0, B
Recall that W~ WQAD +(QAU)TW corresponds to the linear trans-

formation trace(QAO7I-OA” under the Isomormahism of <hown = SO(3)

. 3 . - . . . . .
with R”. When Q€ b\ , QAD 1s symmetric, so this transtermation

D
is symmetric relative to the Killing ferm on S3(3).  This remark

and 7.1 proves the next lemma.




2. Lemma.  Suppose A\ 15 of any Svpe. Then at each point 0

)

of S, , the range of DX\ Q) TJSOISw - TqSO‘S) 1s the orthogonal
0 0 ¢ h

complement of T]S\

D

Next we recall a general context for the birurcation of vector
fields that will be applied to our situation (cf. Reeken 197371, Let
M and 1 be manifolds and X: M < 1 - TM a smooth vector field on
M depending on the parameters 1 € ). We seek the zeros of X. For

L= \0, suppose the zero set S of X 1is a known smooth compact

submanifold of M. Assume that M carries a Riemannian metric and

that for x € S, the range of Dxx(x,\ is the orthogonal complement

0

of T_S. The normal bundle E of § trivializes a neighborhood U

of S. For each x €U, let P(: TKM - be the orthogonal

szv(x)

projection to the fiber § over 7T(x), where =: E - S 1is the

m(x)
projection. By the inverse function theorem, there is a unique
section »,: S - E such that P‘X(a\(x),\) =0 for xS and

in a neighborhood of \O {assume, for example, <that .~ is compact ).

Let X(x,\} be the orthogonal projection of X{x.*) onto the tangent

space to the graph of . at a point x on the graph. Thus, Xf(x,

is a vector field on the graph of . and finding its Zeros is clearly
Al

equivalent ffor small *} to finding zeros of X. We call the ojuation

X(x,*} = 0 on the graph of 4. the bifurcation cquation. Since =




and the graph of >, are diffeomorphic under . , we can equally
well regard X as a vector rfield on 5. This reduction orf the nroblem

is often known as the Lianunov-Schmidt method.

The above procedure may be applied to our vector rield

M
v
(@]
v

i

X(3,A,n:0) with parameters (1,A,n) and variable x = 9
Assume 1 1is near zero and {A,n) 1is near a load fxo,n.j where \,

is of arbitrary type. Thus, there is 1 unigue section . | a1 the
V.

normal bundle to SX determined by the Liapunov-schmidt procedure
0

as described above. Let T(3,A,n) denote the graph or = \ n

vV,ALT

and let X(A,A,n;Q) be the orthogonal projection of X <to the
tangent space of at Q. Thus, X is a vector field on

As above, we may also regard X as a vector field on SA
0

The rest of this section is devoted to proving that the essential

part of X is a gradient. In the general context above, 1f X i

g

a gradient, then so is X since the orthogonal projection cf a gradient
vector field to a submanifold is the gradient of the restriction. This
simple version does not directly apply to our situation as X need

not be a gradient vector field on SO(3). However, the "second order”

Taylor approximation ;: ot ; will be.

To state our gradient results, recall that in J we defined the
quadratic function G: Le - skew to be the second order term in the
Taylor expansion of F about 0. Thus Fi\,7) = %}1:\ « L -
where G is a quadratic function ot {. The appropriate second order
approximation to the vector field X will thus be defined by

Ny, A,nt) = T ikew DAY - %skow G e




Let X, be the second order approximation ot the vector field X on

~

S\ obtained by the Liapunov-Schmidt procedure. Thus, X,(0) 1is the
Ay 2

orthogonal projection of X, onto the tangent space TOS\ for Q = S

.3. Theorem. Suppose A  is ot arbitrary tvpe. Then X, 1is a

gradient vector field on SA . In fact, X, = -grad f, where
Ag 2

ey L Ty vcr Ty o ot e S my e e
I(Q) "<2’O’Q IB> <‘«O; EQU = “‘OtQ IB’ * B u ;C('UQ;>d'

~ . 41 L . . . . -
and Uy = D@(Le) (QQO); i.e., u :5 the uniaue solution in {

of the linearized edquations with load Qi <L

Recall that the pairing between loads "B, and configurations

(or displacements) is given by

(i, = [ B(X) s (X)dV + ‘ NG en XAV = trace k4,0
B B

and physically represents a potentidl for the working of the loads.
T

.. - oA T . .
Observe that if 1 = Le , then (.01, = trace A0 = trace(\) ) = <"Q]R

3

for all Q € S0(3).

Remark. In the second term of X, and t we can replace

by % . However, the difference is higher order. so 7 1s suftficient
for subsequent applications.
Proof of 7.3. We shall show that X, 1= a ¢radient tfield on
; SOt3)  which, hy the remarks follwoing 7..., is sufficient.
: We proceed in two parts. lLet us first show that X, 101 s the i

aradient of <Q,OTIé‘ on all af S0r3)




i ib ‘
i
i |
|
i
i
i T4, Lemma. let £ [ and A = k(). Define 1 vector field K\
on S0(3}) by X\LQH = Skew(QA)+) as above and the man .
) ~ T -
of S0(3) to R by G =(,Q 1. Then X = -grad ..
Proof. Two simple, but useful observations are:
_— ;
If B, W& MS’ with W < skew, then :
(B,W) = (skew B,w)? ' !
1 and .
_ 4
If B& MS, el and s &€ , then j
(2,Bdy = (B, k(2,5)) (2 .
4

To prove 7.4, we compute as follows:

~ T
do(Q) - (wQ) <2,(WQ)‘IB>

oot KOJdo) by (2

i

{ (\‘a"O)T,,\ ¥

(whoa

= 0w, skew QA1 by 110
= STWOL show 00

SROC N ey




~

This deals with the rfirst term of X,. To deal with the second

B

term, we need a special case of Betti's reciprocity theorem:

This 1s a trivial
elasticity tensor. It

example, see Truesdell

To nrove 7.53., we

skew component of %; 1i.

this second derivative

7.5. Lemma. <‘Qvlo.u,_\,Q> = <(WQ)20,U ) for QZO and (WQWZO Z S .

R

consequence ot svmmetry of DC(IB) i.e. of the
is also proved in standard references; for

and Noll 71965;; p. 325.

shall also need to calculate the =econd derivative of the
e. of F(4) = Skew k(2(2))] . Surprisingly,

depends only on the classical elasticity

tensor ¢ . Recall from 352 that we regard ¢ as a linear map of

sym to itself and that

7.6. Lemma. Let F:

we write e = ;{Tu+(7u)T).

~ skew be defined by F(2) = Skew "k{(¢(t)) .

Then r(IS] = 0, DF(IB) = 0 and

D:F(Iq)(u,u) = 2 Skew (f Jusc(e)dV = -2 Skew K(1 .u)
8 Jg u

where “y (M 73, bll

i u

= -DIV(c(e)) and Tu = ¢c{e)*N , Identifving

. 3 .
skew with R”, this becomes

z . (
- Fr = 188 ; R S
D rtIBJLu,u) J bUY dv + j Lu 1 dA

B

Qs
[ox]




.

i

Proof. By Lemma 4.2, F(p) = Skewi'  PdV' where P s the
—_ )
-8B
first Piola-Kirchhoff stress tensor. We have PfI_j = ), =o
5
. [ 5P : .
F(I) = 0. Also, DF(I.)+u = skew . —eTu dV = skew oo 4V =
B B yBJF ;5
3p -
as  ¢ee is symmetric and since %%(IB) = ¢. To compute 7%, a:
2
shall need to use the fact that S is symmetric. Write ¢ = 79 ind
use the product rule tc obtain DFP(F)-TU = TusS{F) + FD_S(F': u,
Thus, as S(I_,} = 0,
8
:Pv' (T TvY = Tue 1) Ty Bt ‘: Yo Ty Tad
D \IB) (Tu, V) Su DFS\ls} Vo Uy DFS(F) u o+ DFS(IS, Su,

. . - - - T 2 .
Now DFS(IB) u = DCS(IS) ("u+ Tu) = cee and DFS(IS)
SO

~

D;T(IB)(TU,Tu)dV
B

.
D'F(IB)'(u,u) skew

r
!
J

= 2 skew (| Tuec{e) dV

|,
g

Finally, this cquals

is symmetric,

-2 skew{( bu_®udv + L T, wdA }

J

B "8

by the divergence theorem, so the last statement follows.

v
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Example.  For 1 hormogeneous isotronlic material,

cie) = “ytrace e)l - Zue
where e = [Tu + 4Tu)rJ/: and )\, 2 are the Lamé moduli.
Thus.
2 s‘ - . a
D'F(IB):u,u) = 2 Skew (' -3Tue(trace (Tu)]l + 2uTuee:dv
-8B
/‘.
= 2 Skew ;tlftrace(Tu]]Tu + uTueTusdVv ]
B

Let us next see what 7.0 says about the gquadratic term G 1in

the Taylor expansion of F. For b e Csvm we have the identity

Fla) = FP_3(5))

where Pe: L - Le is the orthogonal projection. Thus, as DF and

DF are zero at IB and O resnectively, and PCDh(ZB) = D?(IS) s
we get
D F(1.) (u,v) = D F(0) (DS(I ) eu,Dd(T_)ev)
u,v) = Yeu,Dd oV
g { (0 ( 8 oIz
Hence for | &€ Le and writing u, = D@(IB]'IL, we have the identity




p r" - 1
-G(2) = 2 Skew y b ®u,dv + )f T ® u,dAl
3 38

= 2 Skew k((b,f),uz)

where b = -DIV(c-(e)I), and 1 = C(el).N and e, = [Tul - (?u:)T}fZ

However, these last equations sav exactly that (b,T) = ¢, and so we

]
t\)c!_;—‘

(2) = Skew k(,{,ul) (3)

Completion of the proof of 7.3. The derivative of

Qw (20, %QTUQ) in the direction WQ is given by

1.7 . 1.T
<Q‘O" ?(WQ) uQ) + ( Ly —_,—Q uw0>

(10,(WQ)TUO) {by Betti reciprocity, 7.3)

)
7

Q

- (QG’,C,WU

=={ W k(QY

,O,uQ)) by (2}

=={( ¥ , Skew k(QQO,uQ)> by (1)

= -( WO , Skew k(QQ“,uQ)Q )

L:(QLO‘,-«M by 13) . B




i8. Bifurcation Analvsis for Tvpe I

We now discuss the solutions of the basic equation

H(A,A,N50) = Skew(04) - AF(X,Sym(CA),0n) = O (1
for the load U = (A,n) near a load 10 = (Ao,noj having an axis of
equilibrium and of type 1, and for ) near 0 . We shall also obtain

the stability of the solutions and finally we shall compmare nur results
with those of Stonpelli [1958]. For typme | we need to do a bifurcation

analysis on the circle SA corresponding to the degenerate zero set
0
! = 2. . The analvsis has some features in

of H when X = 0 and 0

common with the papers of Hale [1977] and Hale and Taboas [.9S1].
Without loss of generality we can assume that Ay = diaefa,-a,-¢)

where 0 # a; # ¢“. Thus, from 56 the set S\ of zeros of Skew (QA) for
“0

Q € S0(3) 1is given explicitly by the following two points and circle:

S = fdiag(l,-1,-1) diag(-1,1,-1)7 UC (2)
A A
n 0
where
X -y o0
l:.\ = “Q = vooX 8] ‘x = oS +, Vv = ain =
v 001
N
The loads corresponding to the two points are Ao = diag ta,a,08 and
A = diagi-a,-a,c).

From ~.3., we are led to study the critical points of

T . ! .
) uysoon Gy Note trom the Jdivervence
i

£y = (. «)rlp5 + Y
‘ \H

’ 5 e

theorem that




t ! .
{ LO,Q UO ) = f {Tu c{eo) ) dv

| ISP T
] where uQ = DP(IL) (020) and eQ = ['UQ + (‘“O) 172 . Thus the

; tfunction f 1s computable from lineari:zed elasticity alone, which

leads to the curious observation that our ''second order” nonlinear
elasticity here 1involves no more data than linear elasticitv, but

merely processes the information in a different way. Writing (=

X -v 1
§ f 0 as in (2), f becomes a polvnomial of degree 2 in
v 001 '

(x,v). Write the two terms of f as

. L X h > o
£(Q) = Zix,y) = \bo + blx + b:y) + ?(alx +anxy +oagy’ o+ a,x +acy ¢ a.)
()
which defines the numerical constants bO’bl’b“ and RN Next,
define new parameters al,...,a6 by writing
* 2
f (’(:)’) = }_f(\(,y)
and letting (51
s 2 -
= * ’ + - N . -
£ (x,v) 1 X A5XY Yoy EPR SR M
Note that x.....,%, depend on our parameters ', . as well as on

1 6

the elastic moduli of the material. Thus,

4y, = a4

n
1!
-
+
-
1
tr
A
o,
.

Tia
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Replacing

by QQJ , where O 1is as in 2}, effects a

) ’
rotation of the «x-¥ plane. Thus, by rotation or vy if necessary,
we can assume iy, = ()
Let us fix ot and consider the bifurcations ot zZeros of
dr=* 1

of critical

. 1 N oA N
parametrized by 3: R <« 8 =M | pofu,3) = (-2t +u) cos = -2(x

Denote by

3.1. Lemma.

and . as narameters.
3 !

1 drf*

=‘,~-‘<E:< ——
Cfa ,45,,1 R S 3= (

oyt ,
1775
points of ft*. Indeed, M is a manifolti and can bhe

b v

1

2 i
T: R™ x S° > R” the projection onto the first factor.

2 2 2,3 22
D - - -7 - R - -~ )
Set = [2(&1 %) x .tSJ 108, T (x ,

-
If ENE # 0, then 7. M+ R" is a proper stable map in (11,
and its set of critical values is the astroid defined hv . = 0
tsee Figure .. below).
o - . . -1 . -
Since the number of points in ~ () (i.c¢., the Zeros of
df* . - . N .
1t ¢ = (t,,x-.)) 1s 2 constant over ' - 0 or v 0 we
Jd- 1’75
obtain
Lo . df e . , . .
3.2, Corollarv. - has 4 ceros ¢ =, amd has 2 ozero:

(i.e., critical points or r*

3 = 0 the manifold

x_)-snace,
5 TaDaee

EEX O s

-

Wt ittt S .




Proof of Lemma 3.1.

o ]

The critical set I of 770: R < st~ R™ is ;

. _ 1, 2 2 ) ;
“{(u,3) €ER <« 5 e sin™8 + ag cos 3+ u =0}, Thus, the set of

critical values of = can be parametrized by

[
"

-Z(a1~a_) cos” 3
? (8)

2l
3 1

A .
o

1

1}

.3
-n.) sin” §
3

Since I consists of 4 cusp points, & fold lines and
TooiZ is 1-1 , by a result of Whitney (see Mather [1969] or

‘olubitsky and :uillemin [1973)), one knows that mep 1is a stable map.

Eliminating 9 produces the bifurcation set

A LNq2/3 23 2/3
[-(11-13)] = (9

For =

1 - as # 0, (8) describes the astroid shown in Figure .




Next,

by virtue

9

1o

+ BT o+ 0

Shdes

I
——— —a,,
L
Figure 4-
observe that for real numbers A, B and ¢,
A+ B+ C=0 ifoandonly if A7 + B « 7 = 3ABC
. . 3 3 3 o . N
nf the identity A7 + R« (7 - 3ABC = A « R« 7)1
CAY. Applying (10) to [9) shows that 20 15 equivalent to
N )" 507356 “0 Gk hott
< - = - . - - R ( A
l,zl 13 )LJ 1) (Ll g ubiny hoth

gives the

stated conclusion.




de*

The family

(o9

enjoyvs a universal prope

df*

T g(,,23) , with ¢(0,0,3) =9 for (d,c) TR «R° . 7o

N
)

each (%,c)}, denote by

the '"manifold" of zeros.

8.3. Lemma. For (}\,¢)

manifolds and there exist two smooth families of diffeomorphisnms

rty.

My o= i ,a8) 1(df* + g0\, c,0 1,80 = O
‘\~ - 4; S' \i'l AR ’ 7~4) 3: .
sufficiently small, the sets M. are

- . <1 .
= of functions on S° with parameters

A A~
1775

Consider a perturbed family

,C —

) b
y, .t RT ~R™ and V¥ M, - M defined for *,c sufficientlv

L, ¢ — A L, C _—_— —_

al S BT = -y T and ¥ = i itv, v = i itv.
small, such that » x, '\,c° s 0.0 identity, “0,0 identit
L 1 1
Proof: For *,c sufficiently small, the map S R™ « S" =M
g , g a !

o, u.%) = (-2(a,+u) cos A + sin 2 =2, -2{x.+u) sin * - cos ¢ =T, 7!

/\’C(.J, ) (-2¢ 1 u) cos sin o (s ) s N <

. . . . .1 2
defines a parametrization of M o - Bv Lemma 8.1, ~»z., : R <SS ~R
> e

is an unfolding of the prover stable map ~>- . Thus, one can rind

diffeomorphisms ¥*. e
Ty
such that - (7-oy ) = (7
: ’
v = eye oTh 2
<, ¢ oo T

.

solutions near type 1 o
) m
parameter o in RT
letined »vy 70 a,, ay
i -

ow, we are ready to

ads.

with

state our main re=alt on the number ¢

d.
a

-

on R <5 and R™ respectively

e

L . This lemma follows hy letting
A .

et o= St depend smoothly oonou

N R .o Recall othat A Qe




ne 1 type 1 load with ki« ca,-2,-C)

4‘))

and # Then, there exists

4

TN, 0)

a

- a
2

(smooth) function = (%,a), ag,az) « 00

sufficiently small and " > U such that, the traction

problem has:

(i} _four solutions for the load i(e¢) 1f (-, 0
{two of them near C\ )
0
(ii1) six solutions for the load ti(c) if 2(3,¢) >0
(two of them near C, )
A
0
Proof: The bifurcation of zeros of . {¢f. I7) on <y n=51]
0
is the same as finding zeros of (-I, Zx )= (.7, e = g(,c,
A f* .
= %g t 33 %; + g , where ¢(0,0,7}) =10 Let L
be the family of diffeomorphisms found in Lemma 8.3. Take
~ bl(i(C)) b {"(c)) .
2Ched = om U= v 8y TEr v ag) vhieh

has the Jdesired property. B

Next, we want to determine the "generic" structure or the hifurcation
set K= 7% =07 in (},¢) space, > > 0.
For m =0, Mux,,n.) = Ma,,a.) # 0 , it is clear that K = ¢
175 4’75
Indeed, our traction problem has two sojutions near C\ it
A
‘{a,.a.) 0, and four solutions near 1y fag,a) 0
! J \ + N
0
N hl\(E y, AT
tor m =1, vconsider ki oorsl—e—r + Ay mm— ot au!
- - D
where V(&) is the linear part of g This represents 1 straiaht
line which we assime to intersect rthe astropd transyversely i shey
E—— . et

defined for

[}

77}




meet. Yotice that K. = ‘¢ iV, = K {5 the inverse image of
AY

the astroid (defined by equation (9)), under the map

h,<{c) b,i{c)

Nyt Ch=u. (—L———~ + a4, , —m—— o+ a. ) . (0 as in the

X <. 22 4 2 5 A, ¢
proof of Theorem S.4). Write \¢c = o . Recall that ey = Aley) + 0(C'¢c.7y,
and consider the map

y - - b A () b,A(C)

hy ¢ crh (A,c) = 0, (o(—— +a, + 0(), ——S— - a_ + 0(:))

| A v, AC - 4 2 B

Since the astroid is bounded and LD is close to the identity,
A, C

‘dhe € KL=

there exists an interval (-M,M) such that Ex
for \ >0, ¢ sufficiently small. Applving the isotopy theorecm
for transversal maps (see e.g., Hirsch [1976]) to the family EX
through :0 =k , we conclude that the bifurcation set ¥ consists
of 0, 2, or 4 curves with slopes §~1(astroid) (see Figures £,5).
Thus, for example, by choosing ¢ # 0 sufficiently small, and
letting * - 0 (i.e., consider the load *i{c)), one can pass from
a parameter region where there are two solutions near the circle
(four in all) to one where there are four near the circle {six in
all) and back again to the two-solution region (see Figure £ ;.

Such a situation is not dealt with in the analysis of Stoppelli [1958].




1o

\

Figure _

[35]
[N

gure 5

For m 2 2 , let us suppose that the affine map:

bl.x(E) boA(S)
T oA T s

is linear part of 1(¢)

assume that blA(c) = ¢

Notice that K\

» =

of the astroid under the map h\

b AL)

_.‘L.,’_._. +a. = U, .
A > ’*.Cl.‘-1

«Cl = C]' .«C: = C: R

and

is onto, where again Af(c

)

Without loss of generality, we may alse

and  b,A(C) =

= {(cl,c:)‘(x,c

f_l+a

L2

4

consider

¢, , where < :{cl,c4

-

€ X is the inverse
(C ,Cﬁ)"’ N . _i =
- ,Ll,k,.- -
Cﬂ
— o+ Se
35 35) Set
the map

h]\(.‘,

image




" . T R > N
1. & ) . C e =

\, 2 R Sk ot L 2) c,hC
As before, K = - (¢c,,c.) (Mo, ,xc.)

for >0, ¢ sufficiently small.

for transversal maps to the family h,

~

1somorphism h0,0

cylinder-like set along the =z-axis w

astroid in ¢ ,c¢ space. The first o

YN

) 3.
~ — - i _L-J_«
1€z 2 b2 >
=%, _: is hounded uniformlyv
,Z

Applying the isotopy theorem

through the at¥ine

3 -

we conclude that the bifurcation set is a

ith hase a c¢one over the

rder approximation of this

1772
cone 1s given by the cone over the astroid in the plane + = 1,
centered at (-2a4, -Za_) with "size" +fa1—a-: (see Figure 7).
2 o)

o
—

Figure 7
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Next we discuss the stability otf the solutions corresnonding to

loads near : load of type 1. This can be determined by combining
our stability results for tyme
well-xnown stability results for the cusp. We make the same

assumptions as those in Theorem 3.4.

3.5. Theorem. Let A) = diag(a,-a,-¢), AO = diag(a,a,c) and ¥

A = diag(-a,-a,c) as above. The indices of the bifurcating

solutions are boxed in Table 3. (Recall that stable solutions have

, index = 0.) In each case the circle represents CA defined bv

; equation (2). 1

Note that two stable solutions bifurcate off the circle when '
¢ > 'al . In all other cases the solutions near the circle are

unstable.
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3.4. Example. Llet B CR

be 2 region with unit volume and let

the load be given by 1. = (0,7.) where

a 0
TO = 0 -a
0 0 -

where N is the unit outward
isotropic hyperelastic mater:l
¢ has Ltamé moduli A, u |, (s

’

stable and strongly elliptic:

a 0 0
Thus, k(fn) = 0 -a 0
0 0 -c

is a tvpe 1 load. It is easy

' ) o-n N
(e
\ )
. -
S - =
O BN

0/

normal on 3B. Consider a homogenecus
al whose linearized elasticity tensor
ee the remarks following T.5) and is
i.e., . 0, 2L« 3 -0

e
bv divergence theorem, and so
A

- - . B U PN SR Henco
X7+ v7 =1, where o "iF) = <= -ftrace Il 5 RS . Hence,
T | / . I
‘ 1) = : \ fhy 7,350
].) H}> j RIS UQ > d Thy
B
/:1 0 ')\ /'1 AN
P
= W 1w T ST s 0 L - 0y
k 0N -¢ oo~/




which is a constant (independent of x, v). In this situation,

Y == 0 and so our theorems do not apply.

8.5. Example. Consider the same traction problem as above, but
ERCLULAR !
with a homogeneous nonisotropic hyperelastic material whose

,
linearized elasticity tensor is given bv c(¢) = €& - % diag 2

-1 r a 0 0\
In this case, uQ(X) = Q¢ Q[0 -a 0 \’-I X, 0
. \o 0 -c/

1
——
T ow

|
o ww
— o
~

where c-l(F) = F + diag F . Then

/ — I3
\/uQ,c(.ruQ)> dv

S

. 4T

B
2ax ay 0 /ax ay 0 \\
= ay -2ax 0 | , | Ay -ax 0 )>
0 0 ~2¢ N0 0 -c
2 22 2

Hence, . = Sa > , and our traction prohlem fn ‘0-‘ has

six solutions (four near C_\ ) , with stability determined by
N
table 3.




Next owe shall discuss how o obtain the results of Stoppelli

1958 © as ua special case of our analysis. We refer the reader to

- N

the statements orf Stoppelli's results in Grioli "1962, p. 33.. In
this approach one rocuses attention on birfurcations that occur an the
circle by examining what happens at a particular location on the

circle and + = “y - We can assume this voint is 11,0) t.e. f o= 9

with 2o loss of generality.

First of all, if 5 + 2. # 0 then (1,0) 1is not a critical

2 5
point of ft*, so there are no solutions near (1,D). We may assume

then that , + . = 0 and then the Taylor expansion of f* about

wm

3 = (0 hecomes

U X -
£2(3) = (a, + v ) + (-, + ¥ —i}*3 BER
BN 1 6 RS R S 3
1 RET! .
+ ={u, - %. + —)=  + (hicher order toras)
5 71 3 h N

For critical points, we are seeking zeros of

. 4 - L -
dt* o 5 2 | S !
= L - - Vol l e - + — - PR 0"
NS B S Tt SRR I S s
{ - t
. . ] df* N ! N
Case 1. If SO R T # 0, then T _l-fl s i v

and so there is just one solution. This is Theorem b oon p. 0¥

of Grioli 1962




; . 3
| Case 2 [f -a, + 4. - =— = and 1, # hen
1 5 2 2
i and 5o there are o, U or 2 ocojutions
is Theorem 5 oon . 53 o0 Srioi:r fanl
“1
Case 3 It % ‘- ,ou, = ) but Loe i o o E
1 3 2 N “q 3 <
1% 1 <
hen ol : + —i» Toe oy 1 o there are | Coor S
the = ik, - s T P, 30 there are i, . ar o
- Jd- 34 3 3 b

solutions ‘cusp point). This is Theorem H on p. 55 of Sriolt 196l

Furthermore, if we eXpress our Constants i, (74, 7 in rerss of the

elasticity tensor ¢ and solutions or the lincarized probicn
using (3) above, we find the same conditions for these three Cusc:
as is given on p. 57 of Grioli "luel..

Thus we recover the results of Stoppelli on type 1 loads. Vs
was explained in the introduction, however, this analysis js oniv
local on the circle and does not give the full story of the
bifurcatisn picture, even in this case.  The complcie bltfurca
analvsis, including stability.is =ummarized by our Figure o ara

Table 3.
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